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The  Great  Plains  region  of  the  United  States  is  an  area  of  widespread  dryland  crop  production,  with
wheat  being  the  dominant  crop.  Precipitation  in  the  region  ranges  from  300  to 500  mm  annually,  with
the  majority  of  precipitation  falling  during  hot  summer  months.  The  prevailing  cropping  system  is a
two-year  rotation  of  wheat  and  summer  fallow.  The  adoption  of  no-till  practices  has  resulted  in  greater
precipitation  storage  and  use  efficiency,  which  has led  to  greater  cropping  intensity,  higher  produc-
tivity,  more  diverse  crop  rotations,  and  improvements  in  soil  properties.  In  Colorado,  for  example,  a
no-till  rotation  of  winter  wheat–maize–fallow  increased  total  annualized  grain  yield  by  75%  compared
to  winter  wheat–summer  fallow.  Soil  erosion  was  reduced  to just  25% of that  from  a  conventional  tillage
rosion wheat–summer  fallow  system.  The  primary  challenge  with  reducing  fallow  frequency  is the  increase
in  yield  variability  and  risk  of  crop  failure.  Improved  approaches  for choosing  crop  or  fallow  are  being
developed  based  on  soil  water  content  and  forecasted  weather.  Development  of  alternative  crops,  crop
rotations,  and  integrated  livestock  systems  that  are  sustainable  from  both  economic  and  ecological  per-
spectives  is  an  on-going  effort.  Other  research  is  addressing  adaptation  of  cropping  practices  to climate
change  and  the  potential  for dryland  biomass  crop  production  for the  developing  biofuel  industry.
. Introduction

.1. Geography and climate of the U.S. Great Plains

The U.S. Great Plains is a semi-arid, prairie and steppe land-
cape with an extensive area of dryland crop production. The area,
ounded by the Rocky Mountains on the west and by higher rainfall
ones to the east, extends from the Canadian border on the north
o the southern part of Texas (Fig. 1). Most cultivated soils in the
reat Plains were formed in loess parent materials, have textures
f silt loam, silty clay, and loamy sands (Stewart et al., 2010), and
re classified as Mollisols, Entisols, Aridisols, Vertisols, and Ustalfs
Aandahl, 1982). The Great Plains is characterized by hot summer
ays with high sunlight intensity, a summer rainfall pattern, and

old, dry winters (Farahani et al., 1998). The annual precipitation
ncreases sharply from west to east, ranging from just 300 mm east
f the Rocky Mountains to >500 mm on the eastern boundary of the

Abbreviations: PET, potential evapotranspiration; C, carbon; N, nitrogen; U.S.,
nited States.
∗ Corresponding author. Tel.: +1 970 491 6804; fax: +1 970 491 0564.

E-mail address: neil.hansen@colostate.edu (N.C. Hansen).

378-4290/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.fcr.2012.02.021
©  2012  Elsevier  B.V.  All  rights  reserved.

semi-arid zone. The east-west precipitation gradient is contrasted
by a strong, increasing north to south gradient in potential evapo-
transpiration (PET). For example, PET is similar in magnitude to the
annual precipitation in the northern Great Plains, while PET exceeds
400% of the 400–500 mm annual precipitation in the south. The
combination of annual precipitation and PET strongly influences
the geographic distribution of cropping practices and production
potential.

A major challenge to dryland cropping in the Great Plains is the
high level of temporal and spatial climate variability with recurring
periods of severe drought. Periodic wet  cycles in the Great Plains are
countered by droughts such as the decade long drought in the 1930s
that caused extensive wind erosion and economic hardship dur-
ing a time knows as the dust bowl. Severe and prolonged drought
recurred in the early 1950s, early 1960s, mid  1970s, and again in
the most recent decade. Annual precipitation can vary by more than
100% from year to year. In addition to year to year variability, highly
variable, short-term drought periods within the growing season
are also common. A major challenge for dryland crop production is

to implement management practices that efficiently use precipita-
tion while also minimizing risk of crop failure when precipitation is
low or infrequent. No-till management is one management practice
used by producers to address these challenges. This paper addresses

dx.doi.org/10.1016/j.fcr.2012.02.021
http://www.sciencedirect.com/science/journal/03784290
http://www.elsevier.com/locate/fcr
mailto:neil.hansen@colostate.edu
dx.doi.org/10.1016/j.fcr.2012.02.021
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Fig. 2. The annual wheat (A), wheat–summer fallow (B), and
wheat–sorghum–summer fallow (C) cropping sequences diagramed as a one-,
Fig. 1. The Great Plains of the United States.

he adoption of no-till, dryland cropping systems in the semi-arid
nited States Great Plains and also reports on current research
evelopments related to dryland cropping systems.

.2. Dryland cropping systems in the U.S. Great Plains

The principal dryland crop in the Great Plains is wheat (Triticum
estivum L. emend. Thell.). Wheat, as a drought avoidance species,
s well suited to the Great Plains because it can take advantage of
oil moisture that accumulates during fallow periods, winter, and
arly spring, and, when planted at optimal timing, matures early
nough to avoid hot and dry late summer conditions. Wheat pro-
uction came into the Great Plains with the westward migration of
ettlers from more humid regions, where traditional cropping was
ontinuous wheat in monoculture. In the semi-arid Great Plains,
ontinuous wheat systems were prone to failed crop establish-
ent and farmers adopted a wheat–fallow rotation that added a

ull growing season of fallow ahead of the wheat crop to capture
nd store precipitation. A continuous winter wheat monoculture in
he southern Great Plains is grown during a 9-month period from
lanting in October to harvest in July, followed by a 3-month fal-

ow before the next wheat planting (Fig. 2A). The short fallow after
heat harvest during a period of high temperatures in the south-

rn Great Plains is prone to failed establishment of the subsequent
rop. The winter wheat–summer fallow system in the southern
reat Plains adds an additional 12-months to the fallow period,
hich increased storage of precipitation and reduced risk of failed

rop establishment (Fig. 2B). Although the wheat–fallow sequence
roduces only one crop in two years, it stabilized yields, reduced
rop failure, and improved the annualized grain yield at some loca-
ions (Greb et al., 1970; Baumhardt and Anderson, 2006). A similar
daptation occurred in the central Great Plains. In the northern
reat Plains, spring wheat is grown rather than winter wheat,
ut a similar wheat–summer fallow rotation was adopted. Spring
heat is typically planted in April and harvested in July, making

he fallow period as much as 21 months long in the northern Great
lains. These extended fallow periods, referred to as summer fal-
ow, became the traditional practice in the Great Plains for most of
he twentieth century.

While summer fallow minimizes risk of crop failure, there are
any sustainability problems associated with extensive fallowing

ncluding poor precipitation use efficiency, increased soil erosion,
ecreased soil organic C and N, and fragile economic returns (Black

t al., 1981; Janzen, 1987; Campbell et al., 1990; Wienhold et al.,
006). Precipitation storage efficiency during fallow is poor, rang-

ng from approximately 15 to 40% (Black and Power, 1965; Tanaka
nd Aase, 1987; Peterson et al., 1996), with reduced and no-till
two- or three-year cycle beginning with wheat establishment in October for the
southern Great Plains.

systems accounting for the greater reported values. To address
these problems, there has been an evolution of residue manage-
ment practices in dryland cropping systems in the Great Plains that
has reduced the number and type of tillage operations (Lyon et al.,
2004). The development of cost effective herbicides and good plant-
ing equipment has facilitated the adoption of no-till practices by
an increasing number of producers. The adoption of no-till by pro-
ducers coincided with changes to more intensive crop rotations,
with little adoption of no-till among producers following the tra-
ditional wheat–summer fallow rotation. Specific tillage methods
in the traditional wheat–summer fallow rotation vary, but weed
control in conventional tillage generally includes multiple, shallow
tillage passes using wide blades or sweeps to control weeds dur-
ing summer fallow and chisels or disks for seedbed preparation.
Strict no-till systems rely on herbicides for weed control and elim-
inate all soil disturbing operations other than planting. In contrast
to strict no-till systems, conservation tillage uses a combination
of herbicides and non-inverting tillage to control weeds, which
greatly reduces the frequency of tillage and the amount of soil dis-
turbance (Lyon et al., 2004). In 2002, only about one-third of the
land in crop production was in a conservation tillage system, and
less than half of that was no-till (Lyon et al., 2004). The limited adop-
tion of no-till in traditional systems is related to decreased grain
yield with no-till, winter annual grass weeds such as downy brome
(Bromus tectorum L.) that are difficult to control without tillage, cost
of herbicides, and the need for specialized equipment. The greatest
adoption of no-till dryland cropping systems has been associated
with an intensified crop rotation that reduces or eliminates sum-
mer  fallow. For example, no-till farmers in the southern Great Plains
have adopted a cropping system with two crops in three years by
introducing a summer grain crop such as maize (Zea mays L.) or

sorghum (Sorghum bicolor L. Moench) (Fig. 2C). The summer grain
crop in the rotation takes advantage of improved soil water storage
in no-till while retaining valuable fallow periods.
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Fig. 3. No-till adoption in the northern Great Plains (represented by counties in NE
Montana and NW North Dakota), the central Great Plains (represented by counties
in  NE Colorado and SW Nebraska) and the southern Great Plains (represented by
counties in SE Colorado, SW Kansas, and NW Texas) from 1989 to 2004. Data not
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the northern Great Plains. In a long-term study in northeast Mon-
tana initiated in 1984, Sainju et al. (2009) reported that a no-till
annual cropping system for spring wheat reduced potential for soil
vailable for 1999, 2001, 2003.

ource: Conservation Tillage Information Center, Purdue Univ., West Lafayette, IN.

. Adoption of no-till dryland cropping systems

.1. Northern Great Plains

Adoption of dryland no-till management practices in the north-
rn Great Plains has increased during the previous two  decades.
or example, a long-term survey conducted by the United States
epartment of Agriculture reported that no-till in small grain pro-
uction in 25 counties from northeast Montana and northwest
orth Dakota increased from less than 5% of the total cultivated

and area in 1989 to nearly 25% in 2004 (Fig. 3), representing
79,600 ha of no-till (CTIC, 2011). Estimates suggest that no-till
doption has continued to increase since 2004. For instance, local
gency and extension personnel estimate that no-till in the north-

rn Great Plains ranges from 50 to 90% among counties with an
verage of 60% (M.  Friedrich, R. Bray, C. Hill, personal communica-
ion, 2011).
Fig. 4. Fallow land use in 25 counties from northeast Montana and northwest North
Dakota from 1990 to 2010.

Source: United States Department of Agriculture – Farm Service Agency.

The adoption of no-till dryland cropping in the northern Great
Plains has been accompanied by crop diversification and a reduc-
tion in fallow (Cochran et al., 2006). A change to continuous
cropping has been common in areas where wheat–summer fallow
was practiced previously. For instance, in northeast Montana and
northwest North Dakota fallow decreased from 1.2 million hectares
in 1990 to 0.4 million hectares in 2010 (Fig. 4). No-till has facil-
itated these changes due to greater snow capture from standing
crop residue, reduced evaporative loss from the lack of tillage, low
disturbance seed drills, and post-emergence herbicides (Aase and
Siddoway, 1980; Aase and Reitz, 1989; Cochran et al., 2006).

Among the cropping systems in the northern Great Plains that
have replaced wheat–summer fallow are rotations that include
pulse and oilseed crops. Similar to the conditions in the Great
Plains of Canada (Zentner et al., 2002), these rotations have been
facilitated by adoption of no-till but also due to changes in crop
markets, changes in government policy, and increased grower sup-
port through extension and research that drive crop diversification.
Oilseed and pulse production in northeast Montana and northwest
North Dakota combined for a total of 14% of production area in
2010. Initial production of oilseeds in this region increased at a
more rapid rate than for pulse crops, where virtually no plantings
were reported in 1990 (Fig. 5). However, oilseed production area
in the region peaked in 2002, while pulse crop production area
has steadily increased since 1990 and surpassed oilseed production
area after 2008 (Fig. 5).

Management alternatives such as adoption of no-till in con-
junction with annual cropping have provided favorable impact in
Fig. 5. Oilseed and pulse crop production area in 25 counties from northeast Mon-
tana and northeast North Dakota from 1990 to 2010.

Source: USDA – Farm Service Agency.
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Table  1
Annualized grain and total biomass yield as affected by cropping systems averaged over climate and soil gradients and years (1986–1998) in eastern Colorado, USA (mod-
ified  from Peterson and Westfall, 2004). The cropping systems are: 2-year = winter wheat–summer fallow; 3-year = winter wheat–corn–summer fallow; 4-year = winter
wheat–corn–proso millet–summer fallow.

Variable Cropping system (kg ha−1) LSD (0.05)

2-year 3-year 4-year Continuousa

Grain yield 1030 1770 1950 200
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Total  above-ground biomass 3100 4750 

a The continuous system was compared with the other systems on a total biomas

rosion, improved soil quality, and increased soil organic matter
ompared to conventionally tilled spring wheat–summer fallow.
o-till increases water use efficiency of spring wheat (Cutforth
nd McConkey, 1997), oilseeds (Cutforth et al., 2006), and pulse
rops (Cutforth et al., 2002), underlying the contribution of no-
ill to the efficient use of soil water and precipitation in semi-arid
nvironments. Cochran et al. (2000) found that total produc-
ion of continuous spring wheat was about 25% greater than a
pring wheat–summer fallow rotation in a long-term study in NE
ontana initiated in 1984. Similar to conditions in southwestern

askatchewan, pea (Pisum sativum L.) or lentil (Lens culinaris Medic)
arvested for seed provided rotational benefits leading to increased
heat yield compared with continuous wheat in northern Montana

Miller et al., 2003b).  Similarly, Allen et al. (2010) reported that con-
inuous spring wheat grain yield was about 25% lower than yields
n more diverse rotations that included pea.

.2. Central Great Plains

Adoption of dryland no-till management practices in the cen-
ral Great Plains has increased during the previous two decades.
or example, a long-term survey conducted by the United States
epartment of Agriculture reported that no-till in northeast Col-
rado and southwest Nebraska increased from less than 5% of the
ultivated land in the early 1990s to greater than 20% in recent years
CTIC, 2011; Fig. 3). The increased adoption of no-till is associated
ith the intensification of crop rotation from traditional winter
heat–summer fallow rotations. No-till crop rotations common in

he central Great Plains are winter wheat–maize–summer fallow,
inter wheat–maize–proso millet (Panicum miliaceum L.)–summer

allow, and continuous cropping without summer fallow [crops
rown over the years included maize, sorghum, winter wheat, fox-
ail millet (Setaria italica (L.) P. Beauv.), and sunflower (Helianthus
nnuus L.)]. No-till is more commonly adopted with the more inten-
ified crop rotations because, unlike the wheat–summer fallow
otation, the more intense crop rotations are able to utilize the
ncreased soil water in no-till systems. Because dryland produc-
ion of summer grain crops in rotation with wheat is primarily
ssociated with no-till, available statistics on the production of
ryland summer crops, such as maize, sorghum, sunflower, and
illet, can be used as surrogate statistics for the adoption rate of

o-till systems. In eastern Colorado, the dryland maize production
ncreased from less than 10,000 ha in 1986 to 96,000 ha in 2010,
eflecting a 10-fold increase. When considering other crops includ-
ng sunflower and proso millet, summer crop production in no-till
ropping systems has increased by about 208,000 ha in Colorado
ince 1986. Similarly, in the Nebraska Panhandle, dryland maize
roduction went from just 2710 ha in 1991 to over 27,900 ha in
001 (Lyon et al., 2004).

Intensifying the cropping systems using no-till has increased
nnualized grain yield by more than 75% relative to the yield of

he winter wheat–fallow system (Peterson and Westfall, 2004)
Table 1). These yield increases have translated into 25–40% gains
n net income for farmers (Kaan et al., 2002). The largest step gain
n annualized yield was achieved with the addition of maize or
4760 5810 250

s because it included forage crops that do not have a grain component.

sorghum to the system (two crops in 3-year system). Increasing
cropping intensity to three crops in 4 years only resulted in small
yield increases relative to the 3-year system. Adding diversity to
intensified cropping systems has also shown promise for improving
weed control in conservation tillage systems. Cropping intensi-
fication also has positive impacts on soil physical and chemical
properties. Cropping system intensification under no-till manage-
ment decreased bulk density of the surface soil layer, increased
total porosity, and increased effective pore space (Shaver et al.,
2002). The causal agent for the improvement in physical proper-
ties has been the addition of more crop residue biomass to the
soil relative to the wheat–summer fallow system (Shaver et al.,
2003). Coupled with minimal soil disturbance in a no-till envi-
ronment, the additional residue C has promoted aggregation and
has increased aggregate stability. This example demonstrates that
higher net productivity associated with more intensive cropping
can increase system sustainability.

2.3. Southern Great Plains

The adoption of conservation tillage, and particularly no-till,
is much less in the southern Great Plains than in the lower PET
climates of the central and northern Great Plains. For example, a
long-term survey conducted by the U.S. Department of Agriculture
showed that no-till is less than 5% of cultivated land area in north-
west Texas and southwest Kansas (CTIC, 2011; Fig. 3). However,
the long term survey infers tillage practices based on estimates of
crop residue cover. In this region, it can be difficult to infer no-
till adoption based on crop residue because some dryland crops do
not produce enough residue to be classified as no-till in a visual
residue survey. For example, under dryland conditions woody cot-
ton residues provide only 37% of the cover achieved with the same
mass of hollow stem wheat straw (Unger and Parker, 1976). In the
southern Great Plains, the value of the wheat crop for winter graz-
ing by cattle (Bos taurus L.) is frequently greater than the value of
the grain. Low adoption rates of no-till in this region are related
to reduced weight gain by cattle resulting from the slower crop
growth in no-till versus conventional systems during the grazing
period. Grazing winter forage with cattle also compacts the soil and
many growers feel that tillage is required to alleviate the problem.
Higher PET in the southern Great Plains also makes it more diffi-
cult to produce and retain sufficient crop residues to improve soil
water storage efficiency compared to traditional systems involv-
ing inversion tillage. The gradient in PET over the Great Plains thus
illustrates how adoption of no-till and other management practices
vary depending on local conditions.

2.4. No-till alters the pest complex

As adoption of no-till has increased, there have been changes in
the pest complex of wheat in the Great Plains. Many insects and

diseases are harbored in crop residue from no-till systems and can
affect subsequent crops. One example is the wheat stem sawfly,
Cephus cinctus Norton (Hymenoptera: Cephidae), which is a key
pest of wheat in the northern Great Plains of the United States
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Fig. 6. Relationship between observed plant available water content measured at
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Table 2
Correlation coefficients (r2) for the relationship between soil water content at plant-
ing and dry matter and grain yields for the following crops with variable number of
days to harvest: proso millet (Panicum miliaceum L.), pinto bean (Phaseolus vulgaris
L.), sunflower (Helianthus annuus L.), grain sorghum (Sorghum bicolor L. Moench),
and maize (Zea maize L).

Crop Dry matter
correlation

Grain yield
correlation

Days to
harvest

Proso 0.87 0.89 95
Pinto bean 0.82 0.84 95
Sunflower – 0.65 116
Sorghum 0.80 −0.51 131
he time of planting and triticale biomass yield and winter wheat grain yield at
kron, Colorado.

dapted from Nielsen et al. (1999, 2002),  Nielsen and Vigil (2005).

hat has been clearly associated with no-till (Weaver et al., 2009).
his pest has recently become a concern in the central Great Plains
Peairs et al., 2010) and it is speculated that the spread is associated
ith increasing no-till area. Similar observations have been made

or crop diseases and weeds that have a competitive advantage in
o-till environments. Managers will need to adapt to changes in
ests and diseases as a result of increasing no-till production.

. Research achievements in no-till dryland cropping
ystems

.1. Informing crop and fallow choice with soil water and climate
redictions

Although the climate of the Great Plains is classed as semi-
rid, there are years when other climate types, from humid to arid,
revail (Thornthwaite, 1941). In years when humid or subhumid
limates prevail, summer fallow is an unnecessary use of land and
esources. However, in years when an arid climate prevails, sum-
er  fallow may  make the difference between a profitable crop and

o crop at all. The ability to discern when to use summer fallow and
hen to plant a crop would be beneficial in this highly variable cli-
ate. One approach to inform the decision is to quantify soil water

t planting.
Soil water at planting time is a fairly simple measurement

o collect. The ability to predict crop yields based on soil water
t planting varies by crop and is affected by growing season
recipitation. Available soil water at planting was strongly corre-

ated with wheat yield (Fig. 6), with the response ranging from
9.7 to 282.9 kg ha−1 cm−1 (Nielsen et al., 1999, 2002; Nielsen
nd Vigil, 2005). The yield response to soil water increased with
ncreasing precipitation during May  and June. Lyon et al. (1995)
oted a good correlation between soil water level at planting and
boveground biomass 12 weeks after planting for five summer
rops, but the correlation with grain yield varied widely (Table 2).
he best correlations with grain yield were associated with the
rops of shortest duration (proso millet) and dry bean (Phaseo-
us vulgaris L.) and the poorest correlations were for the crops
f longest duration (sunflower, grain sorghum, and maize). Dry
atter accumulation of two annual forage crops (Fig. 6), spring

riticale (× Triticosecale Wittmack;) and foxtail millet [Setaria italica
L.) P. Beauv.], increased linearly as available soil water at planting

ncreased (Felter et al., 2006). This relationship was  strongest dur-
ng years of limited seasonal precipitation. Short-season summer
rops were suggested for use in a dynamic cropping approach to
educe the frequency of summer fallow in the central Great Plains.
Maize 0.93 −0.64 148

Data from Lyon et al. (1995).

The ability to accurately forecast climate 3–6 months ahead of
time could help farmers make better decisions, reduce unwanted
impacts of fallow, and take advantage of expected favorable climate
(Jones et al., 2000). However, there are many challenges associated
with accurate, long-range climate forecasting. These challenges
include understanding and communicating risk and uncertainty,
applying forecasts over a range of scales, and the complexity of
agricultural systems (Jones et al., 2000; Hammer et al., 2001).

Various groups have used the El Niño-southern oscillation
phases (Jones et al., 2000; Hammer et al., 2001) or the related south-
ern oscillation index phase system (Stone and Auliciems, 1992;
Hammer et al., 1996) for long-range climate prediction with a goal
to improve tactical management of crops. However, Lyon et al.
(2003) did not show improved forecasting of summer rainfall in
the central Great Plains using the southern oscillation index sys-
tem. As the ability to accurately forecast climate 3–6 months into
the future improves, it may  be possible to combine knowledge of
soil water content and climate forecasts to make tactical manage-
ment decisions for crop production in the Great Plains. Until the
skill of climate forecasts is adequate, however, growers may  need
to rely on knowledge of available soil water at planting and historic
weather records, as demonstrated with dryland maize by Nielsen
et al. (2010) to make tactical cropping decisions.

3.2. Alternative and fallow replacement crops

Alternative cropping systems in the Great Plains need to be
identified to better manage limited production input resources, pri-
marily plant-available water and N. The traditional wheat–summer
fallow rotation has inefficient soil water and N utilization. Research
has evaluated the potential of adding oilseed and pulse crops to
the traditional wheat–summer fallow rotation to add diversity and
improve efficiency. Drinkwater et al. (1998) suggested that inclu-
sion of legumes in cropping systems increased the turnover and
retention of soil N and organic carbon to improve ecosystem func-
tion and soil quality. In the central Great Plains, peas harvested for
forage or grain have been grown successfully as fallow replacement
crops. In the Canadian Great Plains, less water-intensive rotations
have included pulse crops with great success (Karamanos et al.,
2003; Miller et al., 2003a).  For example, pea or lentil harvested
for seed provided rotational benefits leading to increased wheat
yield compared with continuous wheat (Miller et al., 2003b). Sim-
ilarly, Allen et al. (2010) reported that continuous spring wheat
grain yield in Montana was about 25% lower than yields in more
diverse rotations that included pea.

In the northern Great Plains leguminous green manures have
been utilized to reduce fertilizer N requirements (Pikul et al., 1997;

Zentner et al., 2004; Miller et al., 2006). Potential benefits of green
manures in place of fallow include reduced dependence on fossil
fuel-derived fertilizer, soil quality improvement, and the potential
to market crops as organic products. However, in dryland cropping,
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Table 3
Wheat and sorghum grain yield in response to tillage and cattle grazing treat-
ments in an experiment in Lubbock, Texas in the southern Great Plains. Grazing by
tillage means within years followed by the same letter are not significantly different
according to the Tukey honestly significant difference test.

Grazing–tillage
treatment†

Grain yield (Mg  ha−1)

2005 2006 2007 2008 2009 Mean

Wheat
G–NT 2.07 – 1.93 0.88b 0.94 1.46
UG–SM 2.40 – 3.08 0.69b 0.82 1.75
UG–NT 2.74 – 2.94 1.63a 0.99 2.08

Sorghum
G–SM 4.19 3.48 4.15 1.97b 1.63b 3.08
G–NT 4.48 3.50 4.34 1.95b 1.33b 3.12
UG–SM 4.18 3.65 3.99 1.91b 2.14b 3.17
UG–NT 4.28 4.02 4.26 3.27a 4.75a 4.12
N.C. Hansen et al. / Field Cro

he tradeoff for the benefits of green manure crops is the soil
ater used to produce them and how the reduced water availabil-

ty will affect the subsequent crop. Annual-legume species used
or green manures have different water-use efficiencies and N2-
xation capabilities. Lentil grown for green manure was  identified
s a suitable alternative to summer fallow in spring wheat–summer
allow cropping systems in northeast Montana (Pikul et al., 1997).
imilarly, field pea served as a beneficial green manure crop in
orthern Montana (Miller et al., 2006). Biederbeck and Bouman
1994) reported that annual legumes that produced high quanti-
ies of biomass had higher water-use efficiencies than legumes that
roduced less biomass. When Indianhead lentil was  grown in place
f fallow in a spring wheat–summer fallow system in northeast
ontana, Pikul et al. (1997) reported no differences in soil water

ontent at wheat planting between the wheat–fallow system and
he wheat–legume fallow system. While research on green manure
rops has shown some success in the northern Great Plains, results
f research for the higher PET central and southern Great Plains
how that substituting legume production for a portion of the fal-
ow period in a winter wheat–summer fallow system adversely
ffected subsequent wheat yields due to water use by the legume
Vigil and Nielsen, 1998; Nielsen and Vigil, 2005). These differing
esults demonstrate the importance of continued research to iden-
ify practices that could be more suitable for one environment over
nother.

Another potential change in dryland cropping systems that may
mprove production and sustainability is the inclusion of forage
r biomass crops in the rotation. Recent research has shown that
nnual forage crop yields were highly correlated to starting soil
ater (Fig. 6) and could be a sensible choice if trying to decide

etween fallow and cropping because a reasonable estimate of yield
ould be made before planting based on soil water (Felter et al.,
006). Forage crops also grow for a shorter period of time than
ost grain crops, which leaves more time to store water in the soil

or the subsequent winter wheat crop (Lyon et al., 2007). However,
stablishing consistent markets for forage products often limits the
mount of dryland forage production. One market development
hat could lead to cropping shifts is the market for biomass in sus-
ainable energy systems. As energy markets develop, the potential
or inclusion of biomass crops in dryland regions could increase and
xpand no-till adoption. There is a need to balance the projected
arket needs for biomass with the need for crop residues to pro-

ect the soil and maintain productivity. For example, a recent study
valuated the potential for biomass production in dryland crop-
ing systems in eastern Colorado. It was estimated that a dedicated,
nnual biomass crop could produce an average harvestable biomass
f 5 Mg  ha−1 year−1, but that 2.5 Mg  ha−1 year−1 were required to
rotect the soil from erosion and maintain soil organic carbon
Lloyd and Hansen, 2011).

There continues to be a need for improved soil water and
utrient management practices in the Great Plains. Oilseeds
nd especially pulse crops have shown promise to improve
verall productivity and sustainability of the traditional spring
heat–summer fallow rotation. However, further research is

equired to better understand and facilitate the role of pulses,
ilseeds, and developing crop alternatives into sustainable no-till
ropping systems.

.3. Mixed crop livestock systems

Livestock production, primarily cattle, plays an important
ole throughout the Great Plains. The importance of mixed

rop–livestock systems with grazing of annual forages varies with
limate conditions. As annual precipitation increases from 200 to
bove 500 mm,  there is a corresponding production shift to less
razing and less production of drought tolerant crops, like sorghum,
Data from Baumhardt et al. (2011).
† G, grazed; UG, ungrazed; SM,  stubble mulch tillage; NT, no-till.

which are replaced by drought sensitive crops like maize (Schiere
et al., 2006). Much of the Great Plains receives from 400 to 500 mm
precipitation and is suited to combined production of drought tol-
erant crops and grazing cattle. For example, in the southern Great
Plains, cattle commonly graze early vegetative growth of winter
wheat grown with the dual purpose of producing forage and grain
(Shroyer et al., 1993). This dual purpose cropping approach diversi-
fies and intensifies the common wheat–sorghum–summer fallow
crop rotation in the southern Great Plains.

The tradeoffs with dual-purpose crop livestock dryland systems
are soil compaction from the cattle and the effects of compaction
on crop growth and soil water. Most producers in the southern
Great Plains who  incorporate livestock grazing use stubble mulch
tillage to alleviate surface soil compaction after grazing. Stubble
mulch tillage uses wide blades that run below the soil surface
to cut weeds and loosen the soil with minimal disturbance of
residues on the soil surface. Suitability of grazing dryland, dual-
purpose wheat in the wheat–sorghum–summer fallow rotation
was evaluated by Baumhardt et al. (2009) using stubble-mulch
tillage. They concluded that the dryland wheat–sorghum–summer
fallow rotation produced sufficient wheat forage to permit graz-
ing for 31 days without significantly decreasing mean yield of
wheat grain that averaged 1.72 Mg  ha−1 for ungrazed plots com-
pared with 1.57 Mg  ha−1 for grazed treatments. Similarly, the
subsequent sorghum crop yields were unaffected by grazing, aver-
aging 2.26 Mg  ha−1 and 2.20 Mg  ha−1 for the stubble-mulch tilled
ungrazed and grazed plots. Limited grazing of dryland wheat suc-
cessfully increased overall productivity of a stubble-mulch tilled
wheat–sorghum–summer fallow crop rotation by adding the value
of cattle grazing while maintaining wheat and sorghum grain
yields.

Although stubble-mulch tillage during fallow may  disrupt soil
compaction due to grazing, there is a loss of soil water associ-
ated with the tillage operations. Water conservation with no-till
management during fallow is superior to stubble-mulch tillage
and may  promote wheat establishment and early growth. The
detrimental effects of grazing-induced compaction are potentially
crucial in dryland production systems that rely totally on the
rain infiltration process. In a study to quantify tillage and graz-
ing effects in a wheat–sorghum–fallow rotation, observed wheat
grain yield increased for no-till compared to stubble-mulch tillage
by 0.47 Mg  ha−1 in 2008 and 0.24 Mg  ha−1 in 2009 (p < 0.05), but
there were no significant tillage effects in 2005–2007. A signifi-

cant tillage x grazing interaction was  observed in 2008 (Table 3)
that favored ungrazed no-till wheat over any grazed tillage com-
bination (Baumhardt et al., 2011). The mean available soil water
increased significantly (p < 0.05) from 118 mm for stubble-mulch
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o 139 mm with no-till in 2009, but in 2008 the corresponding
oil water contents of 217 and 224 mm did not differ. In two  of
ve years, the ungrazed no-till grain sorghum yield was signifi-
antly greater (p < 0.05) than all other tillage x grazing treatment
ombinations and exceeded the ungrazed stubble mulch tillage
ounterpart by 50–100%. In years with significant tillage by grazing
nteractions, the overall yield advantage without grazing for no-till
enerally exceeded the value of animal weight gain acquired with
razing. This illustrates the complex relationships in managing dry-
and cropping systems and how the potential value of early crop
rowth or crop residues for feed or other uses must be considered
n light of the potential effects on subsequent crop productivity.

.4. Runoff and soil erosion in dryland systems

Evaporation is responsible for the greatest amount of water loss
n dryland cropping systems and management practices such as no-
ill have been adopted to reduce evaporative losses. Less is known
bout the magnitude of water loss due to runoff in dryland no-
ill systems. Summer precipitation in the Great Plains often comes
s high intensity thunderstorms with potential to cause runoff.
esearch was conducted to assess runoff in dryland agroecosys-
ems in the central Great Plains and the potential for improving
recipitation use with management practices that reduce runoff.
t study sites in eastern Colorado with average annual precipi-

ation of 400 mm and 4% slopes, annual runoff ranged between
 mm year−1 for no-till management with good surface protection
o 80 mm year−1 for no-till management with poor protection of
he soil surface (Norvell et al., 2008). The no-till scenarios with poor
urface protection conditions were caused by multi-year drought
onditions that resulted in low quantities of crop residue. Because
o-till surfaces lack roughness and can experience soil compaction,
hey can be vulnerable to runoff when residue cover is low. Long
erm modeling of no-till dryland cropping systems in eastern Col-
rado showed average runoff losses of 29 mm year−1 for a no-till
inter wheat–maize–summer fallow system and 32 mm year−1 for

 tilled winter wheat–summer fallow system. Although differences
n runoff were small, the associated soil water erosion rates were
ignificantly less than for no-till (0.6 Mg  ha−1 year−1) than for the
raditional wheat–summer fallow rotation (1.6 Mg  ha−1 year−1).

In the Great Plains, wind erosion is generally more severe than
ater erosion and no-till is an effective management approach at

educing wind erosion. Wind erosion in the Great Plains is reported
o be greater than 6 Mg  ha−1 year−1, with some areas being as high
s 18 Mg  ha−1 year−1 (USDA-NRCS, 2000). A recent modeling study
howed that no-till dryland cropping systems had lower erosion
ates at sites in the central Great Plains. In northeast Colorado, wind
rosion from a no-till wheat–maize–summer fallow rotation aver-
ged 5.2 Mg  ha−1 year−1. However, the same cropping system at a
ite in southern Colorado with similar precipitation but higher PET
ad an annual erosion rate of 8.1 Mg  ha−1 year−1. The crop residue

evels at these sites averaged 4.9 and 2.8 Mg  ha−1, respectively.
hese observations illustrate that no-till is effective at protecting
gainst wind erosion in regions where there is adequate residue
roduction, but where residue production is limited, management
ractices other than no-till are needed to control wind erosion. This
artially explains the reduced level of no-till adoption in the south-
rn Great Plains (Fig. 3), where tillage is often used to create ridges
o protect against wind erosion due to low residue cover.

. Summary
The semiarid U.S. Great Plains are a major production region
or dryland wheat, with spring wheat as the dominant crop in
he northern region and winter wheat in the central and southern
earch 132 (2012) 196–203

regions. The traditional production system is a wheat–summer
fallow rotation with conventional or stubble mulch tillage. No-
till systems are being adopted together with more intensive crop
rotations that reduce fallow frequency, increase precipitation use
efficiency, reduce erosion, and improve soil properties. No-till
adoption is greatest in the northern region of the Great Plains,
where climate conditions are favorable for intensified, no-till crop
rotations. Greater than 25% of cultivated land in the northern Great
Plains is managed with no-till and adoption continues to increase.
Inclusion of oilseed crops in continuous crop rotations without fal-
low is common. In the central Great Plains, about 20% of cultivated
land is managed with no-till systems. In this area, no-till is gen-
erally associated with a 3-year rotation of winter wheat–summer
crop–summer fallow (typical summer crops are maize, sorghum,
sunflower, proso millet). There is much less adoption of no-till in
the southern Great Plains, where production levels often fail to
produce adequate crop residue to realize the benefits of no-till.
In this region, tillage is often used to alleviate compaction from
livestock grazing or to roughen the surface as a protection against
wind erosion. However, some producers are adopting no-till sys-
tems and research suggests that potential crop yield advantages
for no-till in the southern Great Plains may  be of greater eco-
nomic value than the value currently gained by grazing in the tilled
systems.

A major decision for dryland farmers in the Great Plains is
whether to fallow or plant a crop. Research has evaluated relation-
ships between stored soil moisture levels at the time of planting and
the resulting crop yield as a tool to assist farmers with this decision.
The relationships are useful, but they are best for crops with rel-
atively short growing seasons. On-going research seeks to couple
long-range weather forecasting with soil moisture assessments to
improve the predicted yield potential for other crops.

Alternative no-till crops and crop rotations are being evaluated
for the potential to increase precipitation use efficiency, improve
soil properties, reduced dependence on N fertilizers, adapt to cli-
mate change, and for develop alternative markets. Inclusion of
pulses as green manures is of interest, but the potential benefits of
these crops must be weighed together with the use of already lim-
ited water resources. Inclusion of annual forage crops can improve
precipitation use efficiency and resilience to climate change in the
Great Plains and these crops may  help meet emerging markets for
biomass based renewable energy. Sustaining crop production in the
Great Plains is highly dependent on reducing soil erosion, maintain-
ing soil organic matter, and economic profitability. No-till based
systems will continue to play an important role in the sustainabil-
ity of dryland cropping in the Great Plains, but managers will need
to adapt to changes in pests and diseases as a result of increasing
no-till production.
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